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Abstract

To perform automatic, unconscious inference, the human brain must solve the

“binding problem” by correctly grouping properties with objects. Temporal binding

models like SHRUTI already suggest much of how this might be done in a connection-

ist and localist way by using temporal synchrony. We propose a set of alternatives

to temporal synchrony mechanisms that instead use short signatures. This serves two

functions: it allows us explore an additional biologically plausible alternative, and it

allows us to extend and improve the capabilities of these models. These extensions

model the human ability to both perform unification and handle multiple instantia-

tions of logical terms. To verify our model’s feasibility, we simulate it with a computer

system modeling simple, neuron-like computations.

1 Introduction

There are several variants of the “binding problem,” which asks how a massively parallel
system can achieve coherence. The most striking examples involve subjective experience
and therefore remain intractable to experimentation. For example, we know that visual
processing involves dozens of separate brain areas, yet we perceive the world as a coherent
whole. Even leaving subjective experience aside, there are still compelling technical problems
in understanding how a neural network can perform crucial computational tasks, such as
those that arise in reasoning about and acting in the world.

A basic problem, and the one that we will focus on, is the “variable binding” problem. As a
first example, consider your ability to pick up objects. Depending on the object, its current
position, and your goals, you have a very wide range of ways of grasping and manipulating
the object, all realized by the network of neurons that is your brain. This is an instance
of the variable binding problem because your choice of values for the three variables object,
position, and goal has consequences throughout your brain on how the action is carried out.
In conventional computing, we assume that different program modules all have access to
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the values of (global) variables and can modify their behavior appropriately. Any theory of
neural computation needs some mechanism for achieving this kind of global effect.

In the domains of problem solving, language understanding, and other symbolic behavior,
the variable binding task becomes even more complex and interesting. The linguist Ray
Jackendoff has suggested that the variable binding problem is the key to any neural theory
of language (Jackendoff, 2002). Both language and problem solving involve operations on
variables before they have values assigned to them. For example, people routinely use general
rules like “All humans are mortal,” equivalently written Human(X) → Mortal(X), to perform
similar inferences about many different people. An obvious such use of variables in language
understanding is reference resolution, which has several forms. The clearest case is the task
of binding pronouns to their referred objects, but there are many other examples such as,
“the winner of the 2012 U.S. Presidential election,” which has meaning even if no one yet
knows precisely who that person is. Humans can perform this inference effectively with a
moderate number of variables without explicit effort, and we would like to model how this
might work in a massively parallel neural system. At the same time, we see the relevance of
localist representations (Page, 2000) and would like to use these concepts also.

A recent article (van der Velde and de Kamps, 2006) in the Behavioral and Brain Sciences
and the accompanying commentary explores a wide range of connectionist approaches to the
binding problem. Here, we discuss a few. Our objective is not to disparage other models, but
rather to avoid existing pitfalls and expand the space of feasible binding mechanisms. The
first such model is brute force enumeration of all possible variable bindings (Ballard, 1986;
Lima, 1992), sometimes with coarse-coded conjunctive binding to mitigate its exponential
complexity (O’Reilly et al., 2001). More recently, van der Velde and de Kamps (2006) employ
such a crossbar network in their Neural Blackboard model. A second approach has been to
use sign (signature) propagation. In sign propagation, each variable in an expression has its
own node (a group of neurons working together). This node can represent and transmit a
particular signature corresponding to a concept, so the signature is essentially treated as a
name for the concept (Lange and Dyer, 1989; Sun, 1989, 1992; Browne and Sun, 2000; Lange,
1992). The main difficulty is that then there must be one signature for every representable
object–so each signature must carry about 20 bits of information.

The most widespread approach is that of phase synchronization, also known as temporal
synchrony. This approach breaks the cycle of neural firing into discrete time slices. When
a variable node fires in-phase with a concept node, this represents a binding between them.
For example, if the node representing “Fido” is firing at the same time as the node for
“big,” then this indicates that “Fido” has the “big” property. This idea has been around for
a while (Milner, 1974), but the best-known model of this sort is SHRUTI (Shastri, 1999),
and its mechanisms have been carefully examined. Despite its clean theoretical background,
there is some experimental evidence (Shadlen and Movshon, 1999) and information theoretic
argument (Averbeck et al., 2006; Golledge et al., 2003) that questions this sort of neural
synchrony and its involvement in binding (Salinas and Sejnowski, 2001).

Another recently proposed solution to the binding problem is the Neural Blackboard archi-
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tecture (van der Velde and de Kamps, 2006). In this design, rather than synchrony or passing
around some sort of marker, there are connections between computational nodes that are
ordinarily disabled, but may be enabled, and when enabled allow signals to travel between
the two nodes for a period of time. Thus, it attempts to solve the binding problem by making
temporary links between nodes. However, it is not designed to permit the complex inference
that SHRUTI does. Some comparison of the neural blackboard architecture and SHRUTI
has been written by van der Velde and de Kamps (2006) and Shastri (2006).

Another parallel inference method is marker passing, which uses simple binary markers. For
instance, Fahlman (2006) suggests a model in which each concept is represented as a node
with a collection of 20-40 “marker bits,” with these concept nodes connected by links. A
central coordinator regulates marker passing by broadcasting relatively complex commands
to all nodes and links. Thus, Fahlman’s scheme is based around a central structure that
chooses and broadcasts the steps needed to perform inference, while local computations are
used to actually execute the steps on all nodes and links. However, Fahlman specifically notes
that this model is not intended to do complex reasoning, and he does not suggest using it
for variable binding. Furthermore, while the system is capable of interesting inference (and
could implement SHRUTI-like inference, thanks to its computationally flexible components),
it is not designed to be neurally plausible. Lange (1992) discusses the advantages and
disadvantages of marker passing models in general.

2 Our approach

Our model of neural binding in inference uses ideas from the signature, marker passing, and
temporal synchrony approaches. It seems unbiological to assume that a network of neurons
can reliably pass around enough signature information to uniquely identify any concept (∼20
bits). However, since we know that people can only deal with a limited number of variables
(as many as about 8 (Miller, 1956), and possibly as few as 4 (Cowan, 2001)), a network
only needs to reason with a few concepts at a time. Like SHRUTI, we suppose that the
network only manipulates patterns that describe which of a conservative estimate of about
4-8 entities (∼2-3 bits) is involved in the current reasoning process. Then, we can use some
of the same structures pioneered by the temporal synchrony approaches. Loosely following
the usage in conventional logic, we will call these ∼8 short signatures fluents, and each one
temporarily represents and is bound to a single object or concept.

The basic idea of replacing eight time slices with a 3 bit signature is straightforward and
was suggested by Browne and Sun (2000). In fact, SHRUTI’s computer simulation is imple-
mented this way. However, while such networks are simple for computers to implement, it
is nontrivial to develop a biologically plausible realization of this idea. Thus, one of our pri-
mary contributions is an explanation of how such a combination of SHRUTI and signatures
could work.

Our other main contribution is the idea of a central structure that controls binding, thereby
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enabling some operations that SHRUTI cannot perform. First, it permits the network to
keep track of specific bindings, where otherwise they would be lost as a time slice or signature
spreads through the network. The central binding structure also allows for more complex
abilities, such as the unification of signatures that have been determined to represent the same
object. Furthermore, a central binder allows conflict-free fluent allocation, which cannot be
performed without global information. This structure is discussed in § 2.2.

To show the feasibility of such a localist inference network, we have implemented a computer
simulation intended to help solidify our model by exposing any weaknesses and causing us
to consider every detail (Barrett et al., 2006b). It is designed to be biologically plausible,
with simple nodes performing simple computations, although it contains some non-biological
simplifications and does not implement every technique described in this paper, as we will
explain.

Finally, it should be mentioned that, like SHRUTI, this model is difficult to describe in only
a few pages. We describe it as well as we can given the constrained amount of space; please
refer to the auxiliary tech report and interactive website (Barrett et al., 2006a,b).

2.1 Basic inference structures with fluents

The general structure of our model is based on SHRUTI (Shastri, 1999). In particular, the
mechanisms for storing short-term relational knowledge, such as Own(John, Book117), and
computing implications, such as Give(X,Y,M) → Own(Y,M), are similar to SHRUTI’s—
except for the treatment of dynamic binding, which is the main contribution of this paper.
Here, we review SHRUTI’s inference structures and the modifications we must make in order
to use fluents instead of temporal synchrony for binding.

The most basic structures in our model, as in SHRUTI, are nodes, representing clusters
of between several and hundreds of neurons that behave as simple computational units.
There are two types of nodes: the activation node holds a numerical value, like SHRUTI’s
atemporal nodes, and the fluent node holds a fluent, just as SHRUTI’s temporally-firing
nodes would fire in a time slice. (A fluent node could be made of a few activation nodes, so
that a pattern of activity of these represents a fluent. This might be done in any number
of ways; the important thing is that it must hold a short signature representing 3 bits of
information.) Weighted connections between nodes are used to perform calculations; for
example, a node could be connected so as to represent the boolean “and” value of two other
nodes, to pass values and fluents, compare fluents, and so on.

Our system uses combinations of nodes to represent short-term beliefs about the world. Each
logical predicate is represented by a group of nodes called a predicate cluster. A predicate
has a semantic meaning (e.g., the predicate in Figure 1 represents the relation Give), and it
has one or more roles, which are implemented as fluent nodes and can be filled by fluents
representing concepts. When a predicate (such as Give) has bindings (such as giver=Mary,
recipient=John, object=book117), then the predicate describes a semantic relation between
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its roles (e.g. “Mary gave book117 to John.”). These predicate clusters represent only
short-term bindings; once the activities representing the role bindings have faded out, the
information about the relation of these roles is lost. Importantly, these bindings can be fed
from other short-term sources, so that information that is observed, heard, or inferred can
be immediately represented and used for further inference. To store long-term information,
we use fact structures, which are described below, to feed information to the predicates.

Each predicate cluster also has a pair of collector nodes, + and -, which indicate the
degree of belief in the instantiated relation. They are mutually inhibitory activation nodes,
so positive and negative evidence compete. If neither node wins, the predicate indicates
uncertainty. In our model, as in SHRUTI, the predicate also has a question node, ?, which
is an activation node that is activated when the current set of bindings is being queried.
This signal causes the system to actively seek out long-term knowledge and implications
of this relation by passing fluents and questions to structures that might support this, and
they then pass back bindings and + or - signals. It is the structure of the network that
controls how these signals are passed and how different predicates imply each other. So
in a properly-structured network, the question ?Give(Mary,John,book117) (Did Mary give
John book117?) will yield the answer +Give(Mary,John,book117) (Yes, Mary gave John
book117.) if there is evidence to support this.

To store long-term knowledge, we use a fact structure. Each fact is associated with and
connected to a particular predicate. It represents a mapping from a specific set of bindings
of that predicate to a truth value. When a predicate’s question node is activated, activation
spreads to the question node of all related fact clusters. If the bindings match, then the
fact sends a signal to the predicate. For example, if we have the fact “John owns book 117”
(Figure 1), when we pose the question “Does John own book 117?” the corresponding fact
will activate the query’s plus collector, verifying that John does indeed own book 117.

Facts and predicates alone are not enough to perform inference, as they do not handle
multiple antecedents, role consistency, and default role filling. These functions are performed
by a mediator cluster (Figure 2), which conjunctively connects one or more antecedent
predicates to a single consequent predicate. It has a role for every variable used by the
antecedents and consequent, a single collector +, and a query node ?. The collector is
linked to the positive or negative collector of each antecedent, so that it will be active if
all the antecedents are active, thus performing a conjunction over evidence. It also has a
connection to the positive or negative collector of the consequent so that (positive or negative)
conclusions will follow. When the consequent’s ? node is active, bindings are passed from that
predicate to the mediator and then on to the antecedents, so that questions about objects
are passed onwards. Because a mediator’s collector can connect to both + and - collectors,
it represents implications that can include negation in any antecedent or consequent.

Predicates and mediators perform different tasks. Predicates have semantic meaning and, by
their collectors’ connection weights and activation functions, perform “or” operations over
mediators, with possible inversions caused by negative evidential weights. Mediators, on
the other hand, represent implications and perform “and” operations over predicates, again
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question node rolescollectors
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Figure 1: A predicate that represents working-memory “own” relationships, connected to a
fact representing long-term knowledge of “John owns book 117”

Mediator

+ ? Role1 . . .Role2 Role3

Predicate (antecedent) Predicate (antecedent)

Predicate (consequent)

Figure 2: Detail of a mediator that implies its consequent when its antecedents match

with possible inversions. Thus, the basic logical operations (and, or, not) are supported.
Also, predicates can be implied independently by many different circumstances, but each
implication requires a conjunction of circumstances.

A very common type of relationship that an inference system must represent is the “is-
a” relationship. To represent this simply, we include an ontology comprising a hierarchy
of types. Each node in the ontology represents a single entity or category, and it sends
activation to its super-categories and its subcategories via two separate paths. (By using
two separate pathways, we can ensure that only sub- and super-types, and not other types,
are activated.) No implication rules directly use nodes in the ontology as their antecedents;
instead, facts bridge the gap between predicates and entities in the ontology. All of this is
the same as SHRUTI.
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However, there is one major complication that is introduced by our alternative to SHRUTI.
SHRUTI’s equivalent of a fluent node, called an m-ρ node, can fire in more than one time
slice, allowing it to simultaneously indicate more than one binding. This ability is not used
in predicates, where only one binding is desired, but only in the ontology, where we would
like to allow one entity or type to be related to more than one variable. However, our pro-
posed fluent nodes can only indicate one binding. This adds complications for the ontology
because SHRUTI’s ontology relies on the near-simultaneous propagation of several bindings
through the ontology. Instead, to do computation equivalent to SHRUTI’s, our model must
either have mechanisms for allowing multiple fluents to move through the ontology at a time
(perhaps by having a copy of the ontology for each fluent) or restrict access to the ontology
to a single fluent at a time, thus time-sharing the ontology over a number of phases (each
long enough for activation to pass up and down the ontology). We propose to use the lat-
ter, restriction-based method, in which the fluents’ access to the ontology is controlled by a
central structure, described below.

This also allows another change that makes the ontology simpler; since the object nodes
need not pass a whole fluent, but just an activation signal, they need not have fluent nodes,
but only activation nodes. However, this comes at the expense of making the fact structures
more complicated, since they must now compare fluents with activation signals. It is possible
to do this if the central structure broadcasts what fluent currently has exclusive access to
the ontology, but obviously incurs some complexity. Our current version does in fact use
this activation-node strategy, but it is not a central feature of the model.

2.2 Central fluent binder

The above-described system could perform the basic operations of SHRUTI, although addi-
tional complexity might be required in the ontology. However, there are still needed abilities,
such as ways to allocate new fluents or to unify existing fluents that refer to the same object.
The SHRUTI model seems to perform these tasks by using local mechanisms (Wendelken and
Shastri, 2004; Shastri, 2000), but in order to work correctly, global information is needed. In
particular, the model must know which time slices are active and how their bound objects
are related, which rather spoils the localness of the mechanisms. We propose to embrace
the global nature of these tasks and suggest the use of a central structure to handle fluent
allocation and unification for the whole system. The presence of a global structure also
reduces the complexity needed in our ontology.

We introduce a central structure, called the fluent binder, that dynamically links each
fluent to its bound entity. Recall that inference involves only passing and comparing a fluent
(about 3 bits), and the effect should be similar to transmitting the full (∼20 bit) address
of the entity. This indirect addressing is achieved by using the central binder to link from
the fluent to the entity. At the computational level, we can imagine a centralized bank of 8
registers, each of which is linked to, and can activate, the represented item. We suggest two
distinct means for performing this linking: The first, which we call A1, exploits standard
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Figure 3: The fluent binder: the fluent registers are dynamically linked to objects in the
ontology; the mediators’ roles are linked to the fluent binder in order to request fluent allo-
cation; and the fluent binder keeps track of the current phase of the ontology and broadcasts
this to facts as needed

techniques for dynamic linking (Kappen and Nijman, 1995; Valiant, 2005). Essentially, the
idea is that the object node and the desired fluent register, both embedded in a network of
neurons, are strongly activated together, and then short-term potentiation creates a stable
path through the network, linking the two. Then, to activate the object corresponding to a
fluent, the fluent binder just activates that fluent register, and the activation spreads through
the strenghtened connections in the network to the object node. The second solution, A2,
uses tree addressing; in A2, the fluent binder’s fluent register contains a bit string describing
the path through a tree in which the leaves are entities in the ontology. To send activation
to that entity, then, activation can be spread through a tree network that is switched by this
address. Similarly, strong activation of both the register and the entity activates the relevant
branches of the tree, allowing the bit string to be read off. Neither of these is implemented in
the pilot system, but van der Velde and de Kamps (2006) use A1 in their neural blackboard
architecture, and Tsotsos et al. (1995) has built essentially the same tree addressing method
as A2.

One of the most important things that the fluent binder does is to allocate new fluents. With
only local methods for assigning fluents, it is very easy for the same fluent to be assigned to
several unrelated objects or variables at the same time, losing the valuable information the
fluent is meant to carry. A central fluent binder could allocate fluents in a number of ways.
One obvious method is simply to include a hierarchical winner-take-all network that selects
a single variable at a time. Then, the binder can send back the next unbound fluent down
the winner-take-all network in response. This is how our computational model implements
this procedure. This hierarchical winner-take-all network should not take long to allocate a
fluent, since with a branching factor of thousands, only a few levels are needed to select a
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Problem: Approach: Solutions:

A. initial setup link input item to fluent A1 ∼ X-bar; A2 ∼ address
B. propagate query ? node activation w/ fluents B1 ∼ basic
C. get ± answer return a single + or - C1 ∼ basic

D. get item answer bind each open fluent D1 ∼ base, D2 ∼ unification
E. multiple instances copies of logic terms E1 ∼ extends B1, B2

F. use ontology taxonomic inferences B2 ∼ with ontology
G. multiple answers return multiple bindings G1

Table 1: Subtasks and Possible Solutions

node even from the many that make up the ontology. A diagram showing the basic structure
and connections of the fluent binder is shown in Figure 3.

The fluent binder is also useful for other tasks, including unification. These are discussed
below, and unification in particular is discussed in § 3.8.

3 Subtasks

Even a simple inference case requires solving a number of problems in neural computation,
and each problem might be approached in various ways. We have implemented a system,
with particular choices of design, to test and illustrate the ideas, but we will describe a range
of possible designs that might be of interest. Of course, what we really want is not just a
means for doing computation, but also a model of how our brains actually work. So, we
describe a range of computationally and biologically plausible solutions to these problems
that can be sorted out by means of experiment. For convenience, we will name and label
various tasks and proposed models of how they might work; they are enumerated in Table 1.

3.1 Subtask A. Linking a fluent with a fixed item

This is discussed in § 2.2 and is not repeated here.

3.2 Subtask B. Propagate a query though the structured rule and

fact set

The SHRUTI group has worked extensively on connectionist variable binding and inference
(Shastri, 1999), and our proposal derives largely from their effort. Like SHRUTI, we use
a structure of predicates, mediators, and facts to represent and propagate role bindings,
queries, and beliefs. The basic design is simple – each predicate or mediator cluster represents
a logical predicate and has circuitry for representing both query (?) activation and bindings.
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By connecting these nodes properly, queries and fluents pass from predicates to their causes
as discussed in § 2.1; the detailed mechanics are described in Barrett et al. (2006a). This is
process B1.

3.3 Subtask C. Return a + or - answer to a query with all fluents

specified

As with subtask B, our solution builds on the SHRUTI model. Each predicate cluster has
connections and local state for conveying a true (+) or false (-) answer. Mediator clusters
need only carry a true (+) signal, because the converse could be represented by a second
mediator with different weights on its connections. If a predicate or mediator cluster has an
answer of any sort, it passes that answer back along connections going the opposite direction
as the question signals. Similarly, facts check that their stored entities match their fluent
inputs (which requires explicit comparison with the fluent binder’s variable values, since the
fact’s stored entities cannot be represented as fluents), and this is how the system retrieves
its stored knowledge. This is discussed some in § 2.1, and the details of these connections
are described in Barrett et al. (2006a).

3.4 Subtask D. Returning unique answer items as well as + or -

answers

We often want to know specific items that satisfy a query, such as ?Color(grass, X), which
asks what color grass is, or ?Gives(Y, Bill, Z), which asks who gave what to Bill. Subtask
D concerns the restricted case where there is only one answer returned for each open fluent,
while subtask G (§ 3.7) addresses the more general case with multiple answers. For this
restricted case, the new requirement is that a specific item gets associated with each open
fluent (X) in a successful query answer. Our solution to this task involves all of the previous
algorithms. The first operation is that of Task A—associate a particular item with a specific
fluent. The trick is to simultaneously highly activate both an open fluent and its filler.

For simplicity, assume that all facts are unary or binary and that each fact is mutually linked
to the items involved (this could be through triangle node linkage (Feldman, 1982)). Let us
consider a simple case, the query ?color(grass, X). We suppose that grass is linked to fluent
f1, and fluent f2 is associated with the open variable X (indicated by the fluent binder having
that fluent register flagged as “open”). Now algorithm B1 can be run, yielding activation
of all rules and facts that might bear on our query. Assuming that the only relevant fact
is color(grass, green), then the node for this fact would be activated and this yields high
activation for the item green. In this very simple case, the simultaneous activation of f2 and
green will suffice to set up the required binding and thus fulfill task D. That is, green will
be bound to f2 and f2 will propagate with a + signal back to the original query. Of course,
it may not necessarily be true that the highest-activated entity is the correct binding for
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the fluent, so the system must always check it. Fortunately, it is easy to check—the system
simply runs inference again with the fluent bound and verifies that the predicate is satisfied.
If it is not, then it can inhibit that entity and run this procedure again. By applying this
procedure once for each open fluent, an inference system could bind objects to as many
fluents as needed.

3.5 Subtask E. Using multiple copies of clusters

The design so far described employs a cluster and its connections to encode a logical term
and its relations to other terms. In a given query, each role of a predicate cluster becomes
associated with a fluent. However, it is frequently the case that a query will involve two
distinct assignments for the same logical term. For instance, the rule

Owns(X,M) and Owns(Y,N) → CanSwap(X,Y,M,N)

requires that two separate instances of the Owns relation, linked to different fluents, be
active in the same inference episode. The obvious way to represent this in a network like
ours is to have multiple copies of each predicate and mediator. Unfortunately, these multiple
instances must somehow be connected to each other in a useful way. There are several ways
to make this work. Wendelken and Shastri (2004) propose that there be one mediator for
each combination of predicate copies in an implication, though of course the number of such
copies grows combinatorically.

We explore another option. The key idea is that all copies of a cluster are part of a coherent
neural structure that we call a family. The family consists of the individual clusters plus
a bit of control logic. At the start of an inference episode, all members of each family are
available for binding. When one of these gets ? activation, the accompanying fluent numbers
are assigned to its first available copy and this is marked as busy.

If a family gets a ? input with fluent numbers different from those stored in the first copy,
it assigns them to its second copy. (This is done simply with inhibition and enabling of
connections by the active first copy.) Whenever a family needs more copies than it has, the
system simply ignores them, resulting in a failure of inference for that query. We can call this
revised query propagating algorithm E1; it extends B1 and is also compatible with adding
an ontology as described in the next section.

Some inter-family communications are easier than others. As a trivial case, each media-
tor family implies exactly one predicate family and, in fact, each mediator corresponds to
exactly one predicate. So, it is simple to send responses from the mediator family to the
predicate family; one simply connects the response directly from the specific mediator to
the corresponding predicate, as we have previously described. The mapping is 1-1, so the
messages are easy to route, and the existence of families adds no complications. Similarly,
sending questions from predicates to mediators is easy for exactly the same reason. This
structure can be seen in Figure 4.
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Figure 4: Overview of inference with multiple clusters

The difficult communications come when mediators ask questions of predicates and when
predicates send responses. Each predicate may be queried by many different mediators in
many families, and its responses are not necessarily useful to all mediators. These properties
make interference likely, so we must be sure that the messages are routed appropriately. This
is done with winner-take-all message receivers, called “question input structures.” When
a mediator needs to send a question to a predicate, it sends a message to the predicate
family’s question input structure. The question input structure is a selection network that
chooses only a single question input at a time, as shown in Figure 5. It then routes the
question to an unoccupied predicate (such routing can be done easily by a simple network
of inhibitory nodes) and continues on to the next question. Thus, it prevents interference
between questions to the same predicate family.
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Later, when a predicate has received an answer, the predicate sends a response to every
mediator in every family that might possibly be able to use the result. All the mediators
test for a match, which can be done easily by comparing fluents and inhibiting this input if
any of the fluents of the mediator and predicate do not match. In this way, responses are
routed appropriately.

3.6 Subtask F. Adding ontology structure to the set of items

This is discussed in § 2.1, and so is not discussed here.

3.7 Subtask G. Treating multiple answer sets

All of the discussion above assumes that at most one set of fluent bindings will be returned for
a query. One might argue that this is a reasonable model of automatic, reflexive reasoning,
but multiple answers are sometimes needed internally for an inference system to find one
consistent set of bindings. For instance, one might want to query all of John’s children
(Child(John,X)) to determine if one of them owns book117. One possible solution to this
issue is to simply extract one binding at a time, using technique D1 (§ 3.4). The first binding

13



is extracted by following D1 to get a set of bindings. Then, the query is posed again with
the previously-bound objects suppressed, so that re-running D1 finds new ones. In this way,
an inference network can extract multiple bindings. This is algorithm G1.

3.8 Unification

In a computational realization of logical reasoning or natural language understanding, uni-
fication is an important operation. Again, there are various versions of unification, but they
all involve identifying two entities that were distinct and then treating them as the same. A
simple case might involve recognizing that the Governor of California and the Terminator
were the same person. Most of the previous connectionist models of variable binding lacked
a way of doing unification, but it is easy to model with fluents. SHRUTI (Shastri, 1999) is
proposed to perform unification by somehow merging time slices that have a large degree of
correspondence, but it is not clear how this can be done without some sort of global system
(not present in SHRUTI) to detect the correspondence and then actually change the firing
of all those nodes.

We treat unification by assuming that each fluent “register” in the fluent binder has a way
of indicating that it has been unified with some other fluent. Performing unification is then
just setting this tag for one fluent and using the other one as usual. That is, the active
fluents will get bound to specific entities as part of the answer generation of algorithm D1.
Unified fluents will refer indirectly to the entities of their partners. This leads to a minor
modification in the algorithm for checking and returning fluent bindings.

In general, when a cluster receives a +/- answer signal, it always needs to compare the
accompanying fluent numbers for each position with the ones it has stored from the query.
When the fluent binder is signaling information about unification, this check also is satisfied
if the incoming fluent number has been unified with the original one. This modification for
task D is called D2. This is another instance where the passing and storing of explicit fluent
bindings supports functionality not available with time slices. This was not implemented in
the demo system.

We do not propose a system for detecting when unification should be performed, just as we
do not propose a system for entering the initial questions. Such detection (and question-
posing) would have to be complex, making use of available reasoning, context, and linguistic
cues, so it is beyond the scope of this paper.

14



4 Discussion

4.1 Simulation

We performed a computer simulation of this model, largely using simple computational units
so as to verify the model’s feasibility. There is not room to discuss it here, but see Barrett
et al. (2006b,a).

4.2 Learning

Any serious neural modeling effort should include considerations of the how the proposed
structures might arise in the brain. Conceptual knowledge is obviously not innate and
thus requires some kind of learning story. We can assume that a basic architecture of
neural clusters like our fluent binder, predicates, and mediators could be part of our genetic
endowment. The question is then how these might get wired up correctly as new concepts
and relations are learned. The standard structured connectionist approach to this kind of
problem is recruitment learning (Feldman, 1982; Browne and Sun, 1988). The basic idea is
that there is a pool of uncommitted linking units that can be recruited to build conceptual
structure.

The SHRUTI project has done extensive investigation of learning for their theory. This
includes not only computational models and simulations but very detailed analysis of how
recruitment learning might map on to the hippocampal complex (Shastri, 2001a). Virtually
all of that work can be carried over to our model. However, there are still a large number
of details that would need to be worked out. At this point, one can only say that there is
no apparent barrier to building a fluent-based conceptual learning model, but it would be at
least a doctoral thesis worth of work.

4.3 Biological plausibility

More generally, the validity of any connectionist proposal depends on its biological plau-
sibility. As a computational level model, our fluent binding system implements all of the
required functionality while honoring the known biological and behavioral constraints: It
reasons about its knowledge base using parallel mechanisms, so it takes time proportional to
the depth of the inference chain rather than the size of the base. It performs this reasoning
with sparse, structured coding, like the best connectionist models to date (van der Velde
and de Kamps, 2006), and uses simple computational units that could be built from neurons
or collections of neurons. Much of this has already been discussed relative to SHRUTI, and
our model is similar enough to SHRUTI that much of that argument holds (Shastri, 2001b).
There seems to be no way to eliminate some common attentional mechanism like the central
binder of § 2.2 (Simons and Chabris, 1995).
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The structures and units in our model (and all others), though computationally simple,
can seem quite complex. Complexity is often considered not to be biologically plausible
since it can be hard to imagine how such complexity would arise. However, we should not
be surprised to find that the reasoning abilities unique to humans require some complex
structure, especially given the many cell types and varieties of connections found in the
brain. And surely complexity should not seem less plausible in the brain than in other body
parts; even more apparently simple systems, such as skin or blood, are wildly complex, with
huge numbers of interacting proteins, genes, and cell types. Furthermore, the complexity
we propose is a few structures that are repeated many times, and these structures would
only need to arise once and be replicated, rather than requiring that each copy be learned
independently.

The biological plausibility of a central binder seems to be the most controversial aspect of this
model. As all neuroscience students have been reminded many times, the brain is a parallel,
distributed system, and there is no particular component that is critical for all systems.
However, there are many centralized or sequential processes and tasks, such as attention and
generating elements of arbitrary categories (e.g. “Name a book where a female character
has a masculine name.”), so it should not be surprising to hypothesize at least one logically
(if not physically) centralized element. Furthermore, the various components of the fluent
binder have simple, plausible implementations such as crossbar networks and winner-take-all
networks.

As we noted, the model and simulations in this paper are unrealistically binary and deter-
ministic. We see no inherent problem in redesigning it with more realistic abstract neuron
models. van der Velde and de Kamps (2006) do this kind of recasting of their similar style
model into physics-based units, but we believe that a statistical treatment along the lines of
(Averbeck et al., 2006) would scale better.

5 Conclusions

It has been clear for decades that variable binding is a difficult task for a massively parallel
inference system. Human brains need this ability for routine thinking and language use, and
computational considerations dictate that the mechanism be quite direct. The structures
and algorithms in this paper provide a range of suggestions on how our brains might get the
effect of variable binding while meeting the biological and computational constraints.

Of course, the model and implemented simulation is only a coarse digital approximation
of a complex analog/chemical reality. No one believes that the brain has registers or com-
municates with binary signal pathways, but the idea of storing and communicating enough
information to resolve approximately 4-8 alternatives is quite plausible. We have suggested
a variety of alternate representations and algorithms that are consistent with known results.
It would be great to get experimental data that help choose among alternatives, but even
before that more computational work can help provide further insight into the brain.
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