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1 Introduction

Epitaxial semiconductor layers grown on a variety of single crystal substrates have created many opportu-
nities for studying basic materials science properties of structures designed on a nanometer scale, as well
as allowing novel quantum electronic and photonic devices to be fabricated. Some of the more interesting
and useful properties of multilayered epitaxial structures occur when dissimilar materials having different
bulk crystal structures and lattice constants are combined. However, heteroepitaxial growth of lattice
mismatched systems forces a competition to take place between anisotropic strain and defect formation.
As the strain energy builds with each additional monolayer, defect formation becomes more energetically
favorable, relieving some of the built-in strain. The most common type of defect is a dislocation. This
is the main reason why strained epitaxial films have a larger dislocation density closest to the epitaxial
layer/substrate interface. Typically, as thicker layers are grown, the dislocation density is reduced.

One standard nondestructive method frequently used to characterize the crystalline quality of semi-
conductor epitaxial layers is x-ray diffraction. X-ray diffraction gives data of x-ray reflection intensity
versus the angle at which the x-ray beam impacts the crystal. This contains peaks in intensity that indi-
cate at what angles x-ray reflection occurs in phase. When using the common θ - 2θ diffraction systems,
these peaks can be artificially broadened by intrinsic instrumental limitations. Thus it becomes quite
important to remove, or at least take into account, any instrumental broadening effects when analyzing
diffraction peaks in order to obtain accurate information on the crystalline structure. It is also important
to properly incorporate some realistic model of the physical effects from defects and strain with any
approach used to analyze x-ray diffraction peaks. The standard method for analyzing a diffraction peak
is to fit it with a Gaussian, Lorentzian, or Voigt (a convolution of Gaussian and Lorentzian) function and
then attempt to extract information from the function’s parameters. However, this neglects some of the
physics present in the crystal, and we attempt to remedy this.

We have developed a first principles technique for analyzing x-ray θ - 2θ diffraction peak lineshapes
that is shown to work fairly well on strained epitaxial layers. In developing this method, we have taken
into account not only instrumental effects, but also include mosaic spread (tilt) as well as lattice parameter
strain relaxation effects due to defect formation. Examples from GaN/InGaN layers grown on sapphire
substrates by molecular beam epitaxy are used to illustrate the quantitative structural information that
can be extracted using this method of analyzing x-ray diffraction lineshapes. One basic assumption
we make with our approach is that all single-crystal substrate (sapphire) peak lineshapes are entirely
broadened by instrumental effects, which then allows us to quantify the instrumental broadening function
and use it to evaluate the epitaxial layer crystal structure.

These first results provide valuable information on the bulk quality of GaN/InGaN structures that we
are fabricating for photonic devices–in particular providing evidence for good crystal growth in a graded
sapphire, GaN, InGaN (P-type) photocathode structure. Preliminary results of device performance will
be presented elsewhere. Here we concentrate on the diffraction analysis methodology and present novel
numerical techniques for diffraction analysis.

2 Model description

To extract physical information about the GaN crystal structure from its X-ray diffraction lineshape, we
take the approach of performing a first-principles calculation of the full diffraction pattern taking into
account only physically meaninful free parameters and performing Monte Carlo simulations of defects.
Free parameters include those describing strain in the graded composition between GaN and InGaN,
strain resulting from the substrate, a small mosaic spread, crystal unit cell sizes, and so forth. We then
simulated the X-ray diffraction lineshape of the model by running a set of Monte Carlo calculations. A
best fit to the data was found by altering the model parameters to minimize the χ2 value.
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Figure 1: GaN Crystal Structure

2.1 Crystal Structure

We know that GaN has a wurtzite crystal structure. The wurtzite crystal has four layers perpendicular
to the c axis per unit cell, each with equal numbers of atoms. We let the size of a single unit cell in
the c direction be one of our parameters. Each layer is composed of only one element, and the elements
alternate between layers. The separation between layers is uneven and alternates between 1/8 and 3/8
of the unit cell size. Even though all layers have the same number of atoms, the Ga and N layers have
different numbers of protons and electrons per atom. This crystal structure is shown in Fig. 1. This
combination of 1/8 and 3/8 spacing and the differing charges leads to incomplete destructive interference
yielding a family of smaller secondary peaks. To reflect this effect in the model, we let each layer reflect a
weighted amount of the incoming X-rays. We let the ratio of weights between layers be a free parameter,
as this could change when, for example, we alloy with In or dope the material.

Also, the model crystal has a large but finite number of layers. Adding layers increases the computa-
tional complexity of the task, but having too few layers would cause unrealistic lineshapes. We estimated
the number of layers from the crystal’s thickness and layer spacing and determined that the crystals we
have been working with are on the order of 1,000 unit cells thick. (These relatively thin layers have been
chosen to balance optical absorption and diffusion losses in a thin transmission-mode photocathode.)

2.2 Regions

Because the real crystal has graded concentrations of In, we had to introduce a simple model to describe
the graded crystal structure. At the same time, it was important to minimize the number of new free
parameters. To this end, we divided the crystal into three regions, the boundaries of which are described
by free parameters. Each region can have separate parameters, such as spacings, layer weights, and so
on.

In order to also model nonlinear gradings, we introduced parameters describing the linearity of a
transition between regions. Suppose, in the linear grading, we have x proportion of the first set of
parameters and 1−x proportion of the second set of parameters. Then, if we use k to be the nonlinearity
parameter and p1 and p2 to be the parameters,

p = p1 ((1− x)− kx (1− x)) + p2 (x+ kx (1− x))

As k goes to 0, this becomes a linear equation. As k goes to ±1, the equation becomes that of a 2nd

degree B-spline. Fig. 2 shows how much p1 contributes to p in the transition region as a function of the
nonlinearity parameter.
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Figure 2: Nonlinearity Between Regions

2.3 Defects

As the crystal grows by epitaxy, small errors build up in the crystal structure. Eventually, these build up
to a point that the stresses on the next layer are too great, and they are finally relieved by the formation
of a stacking defect - dislocation - Dan?. We suppose that the defects are distributed in a Poisson manner.
Therefore, there is an exponential distribution of lengths of unbroken coherent crystal. Each domain of

unbroken crystal gives a sinc2x =
(

sinx
x

)2
-shaped peak in the X-ray diffraction lineshape, and the thicker

a segment is, the narrower its peak. The defects are random and relatively large, causing the different
domains to add in random phase at the detector. Therefore, each peak in the lineshape is a sum of sinc2

peaks with widths distributed in a Lorentzian manner. This feature was originally introduced to explain
Lorentzian tails in the lineshape that could not be described by mosaic spread (Sec. 3.2) or instrumental

broadening (Sec. 2.5). Since averaging over
(

sinx
x

)2
terms gives a 1

x2 Lorentzian tail and since such
stacking defects have a physical basis, we believe the introduction of an additional free parameter was
warranted.

This explains why a Voigt function often approximates the lineshape of an X-ray diffraction peak very
well. A Voigt function is the convolution of a Lorentzian and a Gaussian, which is similar to what our
physical model predicts.

However, when we applied this technique to our model, we found that very small domains of the
crystal were very common. These short domains produced very wide sinc2 functions, leading to a peak
with a base much wider than the one we saw in our data. We therefore concluded that strain builds up
as more layers are added, and defects are unlikely to occur when strain has not had a chance to build up.
So, we set a minimum number of layers between defects, reducing the number of very small domains in
the crystal at the expense of adding another parameter.

The crystal has many domains with boundaries that contain the c direction, and each one might have
a different set of defects. To model this, we simulate the crystal a number of times, each time with
different random defects. Then, we average the lineshape of all these crystals.

2.4 X-Rays

X-ray diffraction data were collected using a Rigaku Geigerflex powder diffractometer in the Bragg-
Brentano geometry, Cu Ka radiation, and a graphite exit monochromator. For the results from this
diffractometer, instrumental broadening was significant. Before describing the method by which we
account for such broadening, we describe our calculation of the intrinsic lineshape expected for an ideal
diffractometer.
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Figure 3: Mosaic Spread

For a detailed modeling of linewidths, we take into account the intrinsic line shape, spacing, and
relative amplitude of Cu Kα lines. The line shape is given by a Lorentzian distribution in which the
width parameter Γ is inversely prportional to the lifetime of the state. The energies are distributed
around the central value E0:

f (E) =

(
A∆E

(E0 −E)2 + (∆E)2

)2

Here, A is the normalization factor. To account for this, first we calculate the lineshape due to X-rays of
energy E0. Then, we perform something akin to a convolution on this lineshape. See §3.1 for information
on this convolution-like operation.

Further, in copper, there are two energy levels which produce X-rays of similar wavelengths. These
are Kα1 and Kα2. As a result, we simulate the crystal under the two energies produced by the X-ray
source. Each of the two energies has its own Lorentzian distribution of similar X-rays, with widths of
2.11 eV and 2.17 eV respectively, and both distributions are approximated as stated above.

2.5 Instrumental Broadening

The X-ray diffraction instrument also broadens the diffraction peaks we see. To model this, we examined
the peaks that came from the substrate, which in our case was sapphire. The substrate was a very thick,
high-quality crystal. For this reason, the peaks should be very sharp. Therefore, most of the broadening
of the substrate peaks should be from the instrumental broadening convolved with the intrinsic linewidth.
We took the widths of the substrate peaks to give us the instrumental effect, which was a Voigt function,
the convolution of an assumed Gaussian instrumental function and a Lorentzian describing the intrinsic
linewidth.

2.6 Mosaic Spread

In addition to being split into several domains throughout its thickness along the c direction, the crystal is
also split into several domains through its length and breadth perpendicular to c. Each of these domains
may be slightly tilted with respect to the others. This changes the distance that each incoming X-ray
must travel to layers of that domain and hence the phase at the detector. Fig. 3 shows the sizes of angles
in mosaic spread.

Instead of each ray traveling 2d sin θ, a ray travels

d (sin (θ + φ) + sin (θ − φ))

4



where we assume that φ follows a normal distribution with a standard deviation of σφ. We found that
we were able to use a convolution-like method for calculating this spread, in much the same way as
we calculate the spread in X-ray energies. See section 3.2 for an explanation of this convolution-like
operation.

2.7 Non-Physical Parameters

In each simulation, we use a Monte Carlo method to produce the lineshape. In each iteration, we first
generate a model crystal with random, Poisson-distributed stacking defects. Then, for each angle of the
detector, we calculate the phase and amplitude of X-rays returning from each layer of the crystal.

Each Monte Carlo run results in one possible crystal structure with random defects. This results in
fluctuations in the average behavior that grow lower as we simulate more crystals, but time restrictions
limit us to using a finite number of iterations. Therefore, we have placed upper and lower bounds on
the number of Monte Carlo iterations. As we get nearer the parameters which match the real data best,
we use more and more iterations, taking more time while increasing accuracy. In this way, we do not
waste computation in the early, rough stages of the minimization. The additional fluctuations in the
early stages play a similar role to fluctuations introduced for the method of simulated annealing and help
somewhat in avoiding local minima in the multidimensional parameter space (but still do not guarantee
finding the global minimum).

3 Modified Convolution

Naively, one might expect the resulting diffraction pattern to result from a simple convolution of the
intrinsic line shape, instrumental broadening, and the diffraction pattern obtained from a monochromatic
X-ray source. More precisely, if we have monochromatic light, we have:

Diff(θ) =
(∑

d e
ik 2d sin θ

)2
(1)

I(θ) = (Inst⊗Diff) (θ) (2)

However, with mosaic spread φ, the distance should no longer be 2d sin θ but rather d sin(θ+φ)+d sin(θ−
φ), giving us

Diff(θ) =

(∑

d

eik (d sin(θ+φ)+d sin(θ−φ))

)2

Here, k and φ vary continuously, and it can be seen that one cannot simply convolve Diff with the
distributions of k and φ. Fortunately, we can deal with this by noting the following.

When we measure an X-ray diffraction line, we record the intensity detected at equally-spaced values
of the angle θ (figure 4). A change in the angles θ of the crystal and 2θ of the detector correspond exactly
to a scaling of the crystal; according to Bragg’s Law, X-rays must travel 2d sin θ farther to reach an inner
layer a distance d below the surface of the crystal than to reach the outermost layer. Clearly, we could
reproduce the effects of changing θ simply by changing d. By reversing this, we can simulate a change
in wavelength, or another parameter, by a change in angle. Using this simple transformation, we can
greatly speed up certain aspects of the computation by simply calculating the lineshape once and then
resampling it at values that give the needed scalings of the crystal. Note that this is not rigorously a
convolution, but it is conceptually similar.
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Figure 4: Crystal Distances

3.1 X-Ray Energy Distribution

The X-ray source does not produce a single wavelength, but rather X-rays with a distribution of energies
around the transition energy. The distribution of intensities is a Lorentzian:

I (E) =
AR

(E −E0)
2

+R2

A is a normalization factor and 2R is the full width half max of the distribution. The intrinsic line-width
of the distribution is inversely proportional to the lifetime of the excited state. We can approximate how
much radiation of energy E the detector will receive at angle 2θ by asking if there is an angle at which
X-rays of E0 would have experienced the same phase shift. Fig. 4 shows a diagram of the crystal with
some of these quantities labeled.

In accordance with Bragg’s law, the X-rays travel 2d sin θ farther to a layer d inside the crystal than
to the first layer of the crystal. For an X-ray of energy E, the wavelength is hc

E . Therefore, this X-ray
travels a number of wavelengths equal to

2d sin θ
hc
E

If we equate the phase of two X-rays of energy E and E0, we get

θ0 = arcsin

(
E sin θ

E0

)
(3)

Note that the equation holds for layers of any depth in the crystal, rather than just layers at some specific
depth d. So, to estimate the radiation the detector receives at angle θ from X-rays of energy E, we use the
amount of radiation the detector receives at angle θ0 from X-rays of energy E0. Here, if the X-ray energies
are distributed according to the function D(E), Ifinal is the final lineshape, and IE0 is the lineshape of
an infinitely sharp X-ray line at energy E0, we see

Ifinal (θ) =

∫

all energies E

dED(E)IE0

(
arcsin

(
E sin θ

E0

))

So, to simulate the effects of the energy distribution, we divide the energy distribution into a set of
discrete samples. Then, we calculate a lineshape for each shifted as above, and add them all together.

Ifinal (θ) =
∑

all energies E

∆ED(E)IE0

(
arcsin

(
E sin θ

E0

))
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3.2 Mosaic Spread

In mosaic spread (Fig. 3), instead of the X-rays traveling a distance of 2d sin θ, they travel

d (sin (θ + φ) + sin (θ − φ))

Equivalently, they travel
d (2 sin θ cosφ)

Equating this to an X-ray with φ = 0 at angle θ0, we get

sin θ0 = sin θ cosφ (4)

Note that, from this equation, we know that for all φ, we must have

θ0 ≤ θ
Also, we have

∂φ

∂θ0
=

− cos θ0

sin θ
√

1− sin2 θ0

sin2 θ

We define some symbols.

• I ′ is the lineshape including mosaic spread

• I is the lineshape not including mosaic spread

• D(φ) is the distribution of φ in the mosaic spread; it is a normal distribution, with standard
deviation σφ

We can approximate the lineshape with mosaic spread by an integral over all possible φ.

I ′ (θ) =

∫

all φ

dφD (φ) I (θ0 (θ, φ))

Considering the nature of our data, it makes sense to change from integrating over φ to integrating over
θ0, which reverses the endpoints of the integral, changing the sign of the integral if we conventionally
integrate over increasing θ0.

I ′ (θ) = −
∫

all θ0

dθ0D (φ (θ0, θ))
∂φ (θ0, θ)

∂θ0
I (θ0)

If we transform the integral to a sum, we then get

I ′ (θ) ≈
∑

all θ0

D (φ (θ0, θ))
cos θ0

sin θ
√

1− sin2 θ0

sin2 θ

I (θ0) ∆θ0

Note that this equation is only meaningful for θ0 less than θ. However, we know from equation 4 that
this is the case for all φ except φ = 0. In the case when φ = 0, θ0 = θ. However, since we are dealing
with discrete θ data, we are approximating the lineshape value at θ to be the average from θ − ∆θ to
θ + ∆θ. Therefore, we can take

I ′(θ = θ0) =

∫ θ+∆θ/2

θ−∆θ/2

dθ0D (φ (θ0, θ))
cos θ0

sin θ
√

1− sin2 θ0

sin2 θ

I (θ0)

Restricting the range to θ0 < θ and approximating everything with its first-order Taylor series expansion,
we get

I ′(θ = θ0) ≈ I(θ0)

(
√

cot θ0 (∆θ)
1
2 +

1

6

(
3

4

√
tan θ0 +

(
1

4
− 1

σ2
φ

)
cot

3
2 θ0

)
(∆θ0)

3
2

)
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4 Fitting Method

Although we have attempted to be conservative in introducing parameters, the resulting parameter space
of the model is still very large. Using physical measurements and constraints, we can fix some of the
parameters, but the number of remaining free parameters is still quite large. Therefore, it is difficult to
examine the parameter space to find the best set of parameters corresponding to the true global minimum
of χ2. To this end, we use a modified simplex minimization method with some of the randomness of
simulated annealing. The algorithm is essentially the “amoeba” algorithm from Numerical Recipes, with
a few alterations [PTVF92].

4.1 Goodness of Fit

In order to fit the model to the target lineshape, we had to choose a metric to measure how well the
model matches the target. We use the standard χ2 metric. First, we use the model to generate our own
X-ray diffraction lineshape. Then, we take χ2 to be a weighted sum of the squares of the differences of
pairs of points between our simulated lineshape and the target lineshape. The weight is the reciprocal of
the expected variance of the X-ray intensity values.

χ2 =
∑

i

(ti − si)2

σ2
ti

(5)

Here, ti is the target value and si is the simulated value.

4.2 Speeding the Fit

4.2.1 Reducing the Number of Iterations

To make the fit faster, we realized that we did not need to use the same number of Monte Carlo iterations
at all stages of the fit. As each iteration has random elements, noise is introduced into the vertices of the
simplex. That is, each point in parameter space has an associated value, but the calculation of this value
will introduce an error. However, averaging more iterations will decrease the error; recall, σx = σx/

√
N .

At first, as the simplex is very large and very far from the minimum, the differences between corners of
the simplex will be very large, making it easy to tell which way the simplex should move. Also, some
randomness is desired in the simplex so that it might escape local minima. In this case, it is possible to
use fewer iterations, thus requiring less time. However, as the simplex nears the minimum and begins to
shrink, the differences between the corners of the simplex become less pronounced. As this happens, we
perform more and more iterations. The important thing is to keep the random noise level small enough
that the highest and lowest of the vertices of the simplex can easily be distinguished. As a result, we use
enough iterations to keep the standard deviation smaller than some fraction of the difference between the
highest and lowest vertices.

However, as the simplex approaches the termination conditions (i.e. as it gets very small), the number
of iterations that must be taken becomes prohibitive. To prevent this, we use an upper bound on the
number of iterations. In some trials, we found this to be useful, as a properly chosen upper bound allows
convergence without overmuch computation. If one discovers that convergence is not occurring with the
current upper bound, it is easily possible to increase it and run the minimization again.

4.2.2 Speeding Each Iteration

To speed each iteration, we took several measures. First, we tried a Fourier Transform method of summing
the contributions of various layers of the crystal. In principle, this should be an O(n logn) method, rather
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than an O(n2) method. However, there were some inevitable discretization errors. Lowering these errors
to a truly acceptable level removed any time advantages of this method.

We also examined diminishing the amount of time by decimating our lineshape data. By removing
three samples in four, we achieved significant speed increases. Of course, this meant a loss of information
carried in the lineshape.

In the end, we decided to combine these speed-enhancing tools in a first stage. First, we fit the model
with decimated data and a Fourier Transform simulation method. Once this converges, we should be at
least somewhere near the correct parameters. Finally, we attempt to fit the model with a full set of data
and the slower, more accurate simulation method. In this way, we were able to sidestep a large portion
of the minimization time cost.

5 X-Ray Diffraction Error Analysis

5.1 Count Data Error

The X-ray diffractometer counts incoming X-rays reflected off of the sample. In count data, the variance
of the error is equal to the count. Therefore,

σ2
t̂i

= t̂i

where t̂ is the “real” data, untainted by any systematic detector errors.

5.2 Constant and Fractional Error

X-ray diffraction data typically include primary peaks with large signal-to-noise ratio (SNR) as well as
smaller secondary peaks with much lower SNR. For the incredibly high count-rates in the dominant
peaks, statistical errors are negligible compared with systematic errors. However, a standard weighted fit
rewards these points to the extent that information contained in the secondary peaks is rendered almost
irrelevant. While a quantitative treatment of systematic errors is difficult by definition, we consider a
method to take into account the effect of systematics on our fit.

We suppose that the detector introduces some error on every sample. The detector gives us t from
the ideal t̂.

t = f t̂+ c

If we look at where the error in t comes from, we see

σ2
t = σ2

f

(
∂t

∂f

)2

+ σ2
t̂

(
∂t

∂t̂

)2

+ σ2
c

(
∂t

∂ĉ

)2

If we assume that the detector gives the same mean data as the “real” data, then we get f centered at 1
and c centered at 0.

σ2
t = σ2

f t̂
2 + σ2

t̂
+ σ2

c

5.3 Estimation of Error

To estimate the constant systematic error, we examined the error in the baseline. To calculate the
percentage error, we used a fit of one peak of the lineshape. The fit was visually very good, but its
calculated error was still surprisingly high. We assume that this lineshape should give a perfect fit if there
were no systematic error, so its χ2 should give the expected value of a χ2 distribution. The expected

9



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 10  20  30  40  50  60  70  80  90  100

C
ou

nt
s

2 Theta

An X-Ray Diffraction Scan

GaN-40

 0

 20000

 40000

 60000

 80000

 100000

 120000

 33.5  34  34.5  35  35.5

C
ou

nt
s

2 Theta

A GaN Peak from an X-Ray Diffraction Scan

GaN-40

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 41.25  41.75  42.25

C
ou

nt
s

2 Theta

A Sapphire Peak from an X-Ray Diffraction Scan

GaN-40

Figure 5: Raw X-Ray Diffraction Scan

value of a χ2 distribution is the number of its degrees of freedom, ndf = data points− free parameters.
We then estimate the percent systematic error required to have this χ2 value:

ndf = χ2 =
∑

i

(
ti − t̂i

)2

ti + c2 + (tif)
2

We then solved for the fractional error, f , by simple iteration using

f2 =
1

ndf

∑

i

(
ti − t̂i

)2
ti
f2 + c2

f2 + t2i

6 Results

7 Program Usage

7.1 Setup

7.1.1 Obtaining the Program

The program xraymodel is available via CVS from jelley.wustl.edu under the name xraymodel. To obtain
a copy, you must have an account on jelley.wustl.edu. Then, type the command:

10



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 33.5  34  34.5  35  35.5

C
ou

nt
s

2 Theta

GaN-40-twopeaks

experimental
simulated

 0

 1000

 2000

 3000

 4000

 5000

 6000

 71  71.5  72  72.5  73  73.5  74

C
ou

nt
s

2 Theta

GaN-40-twopeaks

experimental
simulated

Figure 6: Results: GaN-40

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 33.5  34  34.5  35  35.5

C
ou

nt
s

2 Theta

GaN-50

experimental
simulated

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 71  71.5  72  72.5  73  73.5  74

C
ou

nt
s

2 Theta

GaN-50

experimental
simulated

Figure 7: Results: gan50

 0

 10000

 20000

 30000

 40000

 50000

 60000

 33.5  34  34.5  35  35.5

C
ou

nt
s

2 Theta

GaN-56-2-twopeaks-adjusted

experimental
simulated

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 71  71.5  72  72.5  73  73.5  74

C
ou

nt
s

2 Theta

GaN-56-2-twopeaks-adjusted

experimental
simulated

Figure 8: Results: GaN-56-2

11



 0

 50000

 100000

 150000

 200000

 250000

 33.5  34  34.5  35  35.5

C
ou

nt
s

2 Theta

GaN-6-twopeaks

experimental
simulated

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 71  71.5  72  72.5  73  73.5  74

C
ou

nt
s

2 Theta

GaN-6-twopeaks

experimental
simulated

Figure 9: Results: GaN-6

cvs -d :ext:your username@jelley.wustl.edu:/home/cvsroot checkout xraymodel

This will create a directory called xraymodel which contains all the source files for the program.

7.1.2 Building the Program

To build xraymodel, first go to the directory you checked out. Then, type

make

to compile.
The makefile attempts to automatically detect whether MPI (used in computer clusters) is installed

on the system and configure the program correctly. However, if the makefile detects it incorrectly (e.g.
attempting to use it when it is unavailable), you can override it by setting the variable USING MPI to
true or false as follows:

USING MPI=true make

7.2 Executing the Program

If you execute the program xraymodel with no command-line arguments, you will get some helpful output
containing the usage of various options. However, I will here summarize the most common command
lines I use.

Note on PATH: the diretory containing the executable xraymodel must be in your PATH or else you
will need to run it with the full path (e.g. ./xraymodel). See UNIX documentation for more information
on the PATH variable.

To use xraymodel to generate a crude guess for a set of beginning parameters, use:

xraymodel -g data file new parameter file

To use it to fit a set of parameters to a data file, use

xraymodel -f data file initial parameters plot out file parameter out file

In this case, the plot out file will get three columns of data:

1. The 2θ data
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2. The real intensity data

3. The simulated intensity data

The parameter out file will receive a summary of the chi-squared error and the best-matching parameters.
Please note that sometimes running the program once is not enough to find the best set of parameters
due to Monte Carlo error and local minima. To run the program again, starting from the previous best
parameters, run:

xraymodel -f data file previous parameter out file plot out file new parameter out file

To simply simulate the x-ray diffraction peaks resulting from a set of parameters, rather than attempt
to find the best parameters, use the command:

xraymodel -s data file parameter file plot out file

(This requires a data file to determine on what 2θ range the simulation should occur.)
It is no secret that xraymodel takes a long time to run. As a result, it is often run on a Beowulf

cluster with many different processes talking to each other via MPI. In this case, xraymodel needs to be
run by mpirun and told that it should run using MPI with the -M option like this:

mpirun -np num mpi nodes xraymodel -fM data file initial parameters plot out file

parameter out file

8 Parameter Interpretation

There are 28 parameters, numbered from 0 to 27, describing the crystal. They are as follows.

0. Number of layers – This is the number of unit cells in the thickness of the crystal. For the crystals
I’ve been working on, it’s about 1000. This parameter should not be fit (among other things, because
it’s discrete and thus not differentiable), but should instead be estimated from the thickness of the
crystal and the size of a single unit cell (roughly 5.185 angstroms). There are actually 4 layers per
unit cell, so you would multiply this number by 4 to get the number of layers. In each unit cell,
the layers alternate between Ga and N, and they are spaced at 0, 3/8, 1/2, and 7/8 of the unit
cell. This number shouldn’t be terribly large, because it increases the computational complexity.
However, if it is terribly small, then we might not be able to see proper effects from the defects.

1. Spacing 1 – This is the size in meters of the unit cell in region 1 of the crystal. It affects the
location of the peaks of the first region. Use Bragg’s equation to calculate where the peaks go:
2dsin(θ) = nλ. So calculate the wavelength of the x-rays, and you can calculate the location of the
peaks (at n=1 and n=2, respectively).

2. Defect density 1 – This number gives the fraction of layers in this region which have defects. This
has always been fairly small for me, around .02. This number describes the width of the peaks.
Note that I haven’t really localized the defect density to any particular region, so having 3 different
defect density parameters is kind of bogus.

3. Relative layer weight 1,2 (w/r to weight of first layer in first level) – See Sec. 8.1 about layer
weights.

4. Non-linearity between 1 and 2 – The nonlinearity parameters describe whether the grading between
one region and another are linear or not. This is based on a B-spline equation. See the paper for
details. Usually, the grading is linear, so the value should be 0 or near 0.
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5. Relative layers of distance between levels 1 and 2 (w/r to 1) – See Sec 8.2 about relative size.

6. Relative layers of level 2 (with respect to 1) – See Sec 8.2 about relative size.

7. Spacing 2 – Like spacing 1, but for region 2.

8. Defect density 2 – Like defect density, but for region 2. Note that I really haven’t managed to make
the defects appear in their proper regions.

9. Relative layer weight 2,1 – See Sec. 8.1 about layer weights.

10. Relative layer weight 2,2 – See Sec. 8.1 about layer weights.

11. Non-linearity between 2 and 3 – Like the other nonlinearity parameter.

12. Relative layers of distance between levels 2 and 3 (w/r to 1) – See Sec 8.2 about relative size.

13. Relative layers of level 3 (with respect to 1) – See Sec 8.2 about relative size.

14. Spacing 3 – Like spacing 1, but for region 3.

15. Defect density 3 – Like defect density 1, but for region 3. Note that I really haven’t managed to
make the defects appear in their proper regions.

16. Relative layer weight 3,1 – See Sec. 8.1 about layer weights.

17. Relative layer weight 3,2 – See Sec. 8.1 about layer weights.

18. Cu K-α-2 fraction (.5 by default) – This describes the amount of copper’s second wavelength with
respect to its first wavelength, K-α-1. We added this parameter because we weren’t sure that it
was exactly 0.5. Feel free to change it if you get more data on this. Otherwise, I’d tend to assume
that .5 is right.

19. Minimum size in layers of a domain in the crystal – We found that the crystal defects tended to
appear to close, making a lot of very small crystal domains. This added up to a lot of very wide
gaussians being added to the peak, making its shape unlike that of the real peak. We took that to
mean that very small domains don’t appear in the crystal. So this parameter gives the minimum
spacing between defects.

20. Standard deviation in radians of the angle dislocation (phi) in the crystal – This number describes
the mosaic spread of the crystal. See the paper for an explanation.

21. Overall amplitude weight – When I sum up the signal the simulated detector receives, I use some ar-
bitrary units, making the whole lineshape scaling wrong. This parameter scales the entire lineshape.
You definitely should let this parameter be fit.

22. Baseline level 1 (for 2-theta below TWO THETA CUTOFF) – This says what the baseline is like
around the peak near 2theta = 34 degrees.

23. Baseline level 2 (for 2-theta above TWO THETA CUTOFF) – This says what the baseline is like
around the peak near 2theta = 72 degrees.

24. ce – the constant error in each intensity value – This says what the error is in the baseline.

25. fe – the fractional error in each intensity value – This says what fractional error the detector gives.
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26. Minimum number of iterations of the Monte Carlo peak-generating function – This parameter puts
a bottom limit on the number of iterations to generate a lineshape. I tend to leave it around 100.
This keeps the calculations from getting too imprecise.

27. Maximum number of iterations of the Monte Carlo peak-generating function – This parameter puts
an upper cap on the number of iterations to generate a lineshape. This means that the random
effects won’t ever get smaller than some value. It also keeps the computer from working too hard.
Otherwise, simulation could really take forever.

8.1 Layer Weights

Not all layers have the same weight. Recall, there are Ga and N layers, and they have different atomic
numbers, so they respond to the x-rays differently. Each layer, N and Ga, gets a weight, but this can
also change between regions, as some Ga is replaced with In, for example. So I need 6 layer weights.
However, the relative weight is what is important, so it turns out that having 6 parameters means that
there are some dependencies between parameters (the parameters overdetermine the model). Therefore,
I fixed the first layer weight at 1. So, we have weights like this:

REGION 1: layer 1: 1

layer 2: Relative layer weight 1,2

REGION 2: layer 1: Relative layer weight 2,1

layer 2: Relative layer weight 2,2

REGION 3: layer 1: Relative layer weight 3,1

layer 2: Relative layer weight 3,2

So what do these layer weights affect? They determine the relative amplitudes of the peaks at n=1
and n=2. It turns out that the wurtzite structure (layers at 0,3/8,1/2,7/8) means that there is some
destructive interference reducing the height of the peak at n=2. In fact, I think that if the weights are
the same, then the peak at n=2 (i.e. at 2θ=72 degrees) vanishes completely.

8.2 Relative Size or Layers of Distance

I wanted the 3 crystal regions to be able to change size, but I wanted the parameters to be change in
a pretty much unbounded way. I could have had percentages (region 1 takes 50%, region 2 takes 20%,
etc.), but then it would be too easy to have the percentages add to more than 1. What I did instead was
to have weights on the size of each region. Then, the percentage size is weight[i]/sum(weights). I also
added similar weights to the graded areas between regions. In this way, I could make the grading faster
or slower. However, I had the same overdetermination problem as in the layer weights, so I fixed one of
the weights to be 1. For example:

Region Weight Fraction Number of layers

1 1 1/TOTAL 1/TOTAL*TOT_LAYERS

grade btw 1-2 param 5 param 5/TOTAL param 5/TOTAL*TOT_LAYERS

region 2 param 6 param 6/TOTAL param 6/TOTAL*TOT_LAYERS

grade btw 2-3 param 12 param 12/TOTAL param 12/TOTAL*TOT_LAYERS

region 3 param 13 param 13/TOTAL param 13/TOTAL*TOT_LAYERS
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